Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadm9314, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507494

RESUMO

Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Animais , Ratos , Próteses e Implantes , Fenômenos Físicos , Fenômenos Magnéticos
2.
Adv Mater ; 36(14): e2308575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153331

RESUMO

Soft electronics provide effective means for continuous monitoring of a diverse set of biophysical and biochemical signals from the human body. However, the sensitivities, functions, spatial distributions, and many other features of such sensors remain fixed after deployment and cannot be adjusted on demand. Here, laser-induced porous graphene is exploited as the sensing material, and dope it with permanent magnetic particles to create hard magnetic graphene nanocomposite (HMGN) that can self-assemble onto a flexible carrying substrate through magnetic force, in a reversible and reconfigurable manner. A set of soft electronics in HMGN exhibits enhanced performances in the measurements of electrophysiological signals, temperature, and concentrations of metabolites. All these flexible HMGN sensors can adhere to a carrying substrate at any position and in any spatial arrangement, to allow for wearable sensing with customizable sensitivity, modality, and spatial coverage. The HMGN represents a promising material for constructing soft electronics that can be reconfigured for various applications.

4.
ACS Nano ; 16(9): 14679-14692, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36044715

RESUMO

Multifunctional sensing systems play important roles in a variety of applications, incluing health surveillance, intelligent prothetics, human-machine/ambinece interfaces, and many others. The richness of the signal and the decoupling among multiple parameters are essential for simultaneous, multimodal measurements. However, current multifunctional sensing fails to decouple interferences from various signals. Here, we propose a double-sided wearable system that both enables multifunctional sensing and avoids the interferences among multiple parameters. Specifically, the sensitivities of system modules to strain are controlled through customizing the pattern and morphology of sensing electrodes as well as the modification of active materials. Compensation of temperature drift and selection of sensing mechanisms ensure the thermal stability of the system. The encapsulation of modules resists the interferences of proximity, normal pressure, and gas molecules at the same time. A double-sided partition layout with serpentine interconnections reduces the effect of motion artifacts and ensures simultaneous operation of electrochemical-sensing modules. Cooperation among decoupled modules acts as the bridge between the perception of ambience changes and the timely feedback of the human body. In addition, to sense the signal at the interface, modules for energy harvesting and storage are also integrated into the system to broaden its application scenarios.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrodos , Humanos
5.
Adv Mater ; 33(40): e2102691, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396604

RESUMO

The advent of functional materials offers tremendous potential in a broad variety of areas such as electronics, robotics, and energy devices. Magnetic materials are an attractive candidate that enable multifunctional devices with capabilities in both sensing and actuation. However, current magnetic devices, especially those with complex motion modalities, rely on permanently magnetized materials with complicated, non-uniform magnetization profiles. Here, based on magnetic materials with temporary-magnetization, a mechanically guided assembly process successfully converts laser-patterned 2D magnetic materials into judiciously engineered 3D structures, with dimensions and geometries ranging from mesoscale 3D filaments, to arrayed centimeter-scale 3D membranes. With tailorable mechanical properties and highly adjustable geometries, 3D soft structures can exhibit various tethered locomotions under the precise control of magnetic fields, including local deformation, unidirectional tilting, and omnidirectional rotation, and can serve as dynamic surfaces for further integration with other functional materials or devices. Examples demonstrated here focus on energy-harvesting systems, including 3D piezoelectric devices for noncontact conversion of mechanical energy and active motion sensing, as well as 3D solar tracking systems. The design strategy and resulting magnetic-controlled 3D soft structures hold great promise not only for enhanced energy harvesting, but also for multimodal sensing, robotic interfaces, and biomedical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA